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Abstract
Distance metric learning is a vital issue in people re-identification. Although numerous 
algorithms have been proposed, it is still challenging especially when the labeled informa-
tion is few. Manifold regularization can take advantage of labeled and unlabeled informa-
tion and achieve promising performance in a unified metric learning framework. In this 
paper, we propose Hessian regularized distance metric learning for people re-identification. 
Particularly, the second-order Hessian energy prefers functions whose values vary linearly 
with respect to geodesic distance. Hence Hessian regularization allows us to preserve the 
geometry of the intrinsic data probability distribution better and then promotes the perfor-
mance when there is few labeled information. We conduct extensive experiments on the 
popular VIPeR dataset, CUHK Campus dataset and CUHK03 dataset. The encouraging 
results suggest that manifold regularization can boost distance metric learning and the pro-
posed Hessian regularized distance metric learning algorithm outperforms the traditional 
manifold regularized distance metric learning algorithms including graph Laplacian regu-
larization algorithm.
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1  Introduction

People re-identification, which aims to match the same person across disjoint camera 
views, has attracted extensive attention in the past few years. It has many important 
application fields, such as human–computer interaction, security monitoring and so 
on. Generally speaking, people re-identification is composed of two vital stages. The 
first stage is to extract discriminative visual features for robust representation. The sec-
ond stage is to use distance metric for conducting similarity measure to seek correct 
matches. Then the methods for people re-identification can be divided into two types i.e. 
feature representation and distance metric learning. The feature representation methods 
mainly focus on the extraction of appearance features. However, it is hard to compute 
distinctive and reliable features because people’s appearances often undergo large varia-
tions across non-overlapping camera views because of significant changes in viewpoint, 
lighting, background and occlusion. On the other hand, methods of feature representa-
tion mostly apply standard distance measure including Manhattan distance, Euclidean 
distance and Cosine distance. Choosing standard distance measure means treating all 
features equally. In other words, it won’t automatically choose good features or discard 
bad features, which is inappropriate in some particular situations.

Learning a good metric in feature space is crucial to people re-identification. Doz-
ens of distance metric learning methods have been developed which aim to make use 
of prior information in form of labels to conduct similarity measures. These methods 
can be traditionally classified into three categories: supervised form with class labels 
[1]; Unsupervised form without label information [2]; semi-supervised form with both 
information [3].

In supervised distance metric learning, the label information of data is assigned in the 
general form of pairwise constraints. The metric is learned by minimizing the distance 
of data pairs within the equivalence constraints meanwhile maximizing the distance 
of data pairs within the inequivalence constraints. For example, Zheng et  al. [4] pro-
posed Probabilistic Relative Distance Comparison (PRDC) model to maximize likeli-
hood of true matches which has a comparatively smaller distance than that of the wrong 
matches. Kostinger et  al. [5] developed keep it simple and straightforward (KISS) to 
learn a metric in the perspective of statistical inference. Later two improved algorithms 
called Regularized Smoothing KISS (RS-KISS) [6] and QR Decomposition (QRKISS) 
[7] respectively were further introduced. Mignon et al. [8] proposed pairwise constraint 
component analysis (PCCA) to cope with high-dimensional input space by learning a 
projection into a low-dimensional space. Lu et  al. [9] proposed a new framework to 
learn multi-metrics with multiple kernels embedding. Hu et al. [10] designed a two-step 
metric learning strategy to improve the accuracy of Support Vector Machine (SVM).

In unsupervised distance metric learning, the gist is to learn an underlying low-
dimensional subspace in which the geometric distance between the majority of the 
observed data are preserved. Kodirov E et  al. [11] proposed regularized dictionary 
learning based model to learn cross-view discriminative information from unlabelled 
data and simultaneously preserve the data relationship in the subspace spanned by the 
learned dictionary bases. Peng et al. [12] introduced unsupervised cross-dataset transfer 
learning framework to obtain source-dataset-shared while target-dataset-biased repre-
sentation which achieved cracking performance. Yu et  al. [13] developed clustering-
based asymmetric metric learning approach to construct view-specific projection, which 
not only learns the asymmetric metric but also seeks optimal cluster separations.
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In semi-supervised distance metric learning, the majority of methods are based on the 
manifold assumption which means the sample points are concentrated upon a low-dimen-
sional submanifold instead of being filled in the whole feature space. Liu et al. [14] proposed 
Semi-supervised Sparse Metric Learning (SSSML) through employing unlabeled samples in 
Affinity-Preserving Principle and ensuring sparsity of metrics. Niu et  al. [15] employed an 
information-theoretic method named Semi-supervised metric learning paradigm with hyper-
sparsity (SERAPH) by maximizing and minimizing the entropy of probability on labeled 
data and unlabeled data respectively within the principle of entropy regularization. Hoi et al. 
[16] proposed Laplacian Regularized Metric Learning (LRML) by integrating both labeled 
data and unlabeled data information through an effective graph regularization framework. In 
this algorithm, the Laplacian of adjacency graph is computed in an unsupervised manifold 
using Laplacian Eigenmap with both labeled and unlabeled samples. The data manifold can be 
approximated with the graph Laplacian.

Although Laplacian regularized metric learning has achieved good performance. However, 
this kind of semi-supervised algorithm based on the graph Laplacian suffers from the fact that 
the solution is biased towards a constant and the lack of extrapolating power. Aiming to solve 
the above problems, we choose Hessian regularization to assist distance metric learning and 
apply it for person re-identification. Compared to the well-known Laplacian regularization, 
Hessian has two predominant merits. The first property is that Hessian has good extrapolating 
power, that is, the values of functions are not restricted by the scope of training outputs. This 
extrapolation capability can bring about significant improvements especially when the labeled 
points are insufficient. The second advantage is that Hessian has richer null space. The outputs 
of the functions contained in Hessian vary by linearity with the geodesic distance along the 
underlying manifold. This advantage makes it particularly suited for semi-supervised tasks, 
where the goal is to build user-defined embedding based on the given labels. To evaluate the 
proposed algorithm, we conduct extensive experiments on publicly available VIPeR dataset, 
CUHK Campus dataset and CUHK03 dataset for person re-identification. The results dem-
onstrate that our framework is superior to the related algorithms in terms of accuracy and 
computing complexity.

The rest of this paper is arranged as follows: In Sect. 2, we briefly review the related works 
including traditional distance metric learning and Hessian regularization. In Sect. 3, we pre-
sent the proposed Hessian regularized distance metric learning. In Sect. 4, we describe our 
extensive experiments and discuss the experimental results. In Sect. 5, we conclude the paper 
with some discussions.

2 � Related Works

In this section, we briefly review the related works including distance metric learning and 
Hessian regularization.

2.1 � Distance Metric Learning

Suppose we are given a collection of labeled training set C =
{
x1, x2 ⋯ xn

}
 , where xi ∈ Rd . 

For the examples in C , two sets of pairwise constraints are available:

S =
{(

xi, xj
)
|xi and xj are labeled to be similar

}

D =
{(

xi, xj
)
|xi and xj are labeled to be dissimilar

}
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where S is the set of equivalence constraints and D is the set of inequivalence constraints. 
For any two points xiand xj , distance between them can be expressed as follows:

In order to guarantee that this be a metric, which satisfies the property of non-neg-
ativity and the triangle inequality. We require M is a positive semi-definite matrix and 
tr is the trace of the matrix. Furthermore, we can assume that there is a kind of corre-
sponding linear mapping P : ℝm

→ ℝ
r , where P =

[
p1,⋯ pr

]
∈ ℝ

d×r , for a possible met-
ric M , the distance between two examples can also be described as:

In other words, learning M is equivalent to learning a linear projective mapping P in 
the feature space. Following the principle of keeping similar data points close and dis-
similar data points well-separated. The optimization framework is expressed as follows:

This formulation attempts to find the metric M by minimizing the sum of squared 
distances between the similar data points and meanwhile enforcing the sum of distances 
between the dissimilar data points larger than 1. The above method has been shown 
effective for cluster tasks, but it is likely to be overfitting. To enhance the generaliza-
tion and robustness performance, regularization technique has been extensively used 
in distance metric learning. In Regularized distance metric learning (RDML) [17], a 
Frobenius norm as the regularization term is added to the overall objective function to 
improve the generalization and control the model complexity. The method is efficient 
especially for dealing high dimensional data.

But in most cases, the labeled data is insufficient and unlabeled data is very ben-
eficial to DML task. In order to take advantage of all the given labeled and unlabeled 
information, Laplacian manifold regularization is utilized in Manifold Regularized 
Transfer Distance Metric Learning (MTDML) [18] framework. The Laplacian of the 
adjacency graph is computed in an unsupervised manner using Laplacian Eigenmap 
with both labeled and unlabeled samples. The linear mapping P is smoothed along the 

(1)

dM
(
xi, xj

)
=
‖‖‖xi − xj

‖‖‖M

=

√(
xi − xj

)T
M
(
xi − xj

)

=

√
tr
(
M
(
xi − xj

)(
xi − xj

)T)

(2)

d
(
xi, xj

)
=
‖‖‖P

T
(
xi − xj

)2‖‖‖
=
(
xi − xj

)T
PPT

(
xi − xj

)

=
(
xi − xj

)T
M
(
xi − xj

)

(3)

min
M≥0

∑

(xi ,xj∈S)

‖‖‖xi − xj
‖‖‖
2

M

s.t.
∑

(xi ,xj∈D)

‖‖‖xi − xj
‖‖‖
2

M
≥ 1
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data manifold which can be approximated with the graph Laplacian. Mathematically, 
the regularization is written as follows:

where Wij is the edge weight between two samples xi and xj , If nodes i and j are connected, 

Wij = e

−
‖‖‖‖
xi−x

2
j

‖‖‖‖
t  , t ∈ ℝ ; Otherwise,Wij = 0 . D is a diagonal matrix whose diagonal elements 

are equal to the sum of the row entries of W , and L = D −W is known as the Laplacian 
matrix. Combining the basic loss function with this regularization term, the framework is 
formulated as follows:

2.2 � Hessian Regularization

It has been proved that the geodesic function in full space of Laplacian is no other than a 
constant which implies that Laplacian regularization (LR) biases the solution towards a 
constant function and then leads to poor extrapolation capability [19]. In contrast to Lapla-
cian, Hessian has richer null space and drives the solution varying smoothly along the 
manifold. In other words, Hessian regularization (HR) is more preferable for exploiting the 
local geometry than LR. The Hessian of a function f  is defined by evaluating Eells-energy 
SEells(f ) in normal coordinates. SEells(f ) is written for real-valued functions, f ∶ M → ℝ , as:

where M means the m-dimensional data sub-manifold in ℝd , ∇a∇bf  is the second covariant 
derivative of f  , TxiM is the local tangent space on the point Xi (seen as an m-dimensional 
affine subspace of ℝd) . dV(x) is the volume element. Normal coordinates at a given point Xi 
are coordinates on M such that the manifold looks as Euclidean as possible (up to second 
order) around Xi . Thus in normal coordinates xr centered at point Xi:

Then an operator B is defined to give the value f
(
Xj

)
 on Nk

(
Xi

)
 for estimating Hessian 

of f  at Xi.

(4)

R(M) =
1

2

N∑

i,j=1

‖‖‖Pxi − Px2
j

‖‖‖Wij

=

m∑

l=1

pT
l
X(D −W)XTpl

=

m∑

l=1

pT
l
XLXTpl = tr

(
PTXLXTP

)

= tr
(
XLXTPPT

)
= tr

(
XLXTM

)

(5)
min
M

𝛾s

∑

(xi,xj∈S)

‖‖‖xi − xj
‖‖‖
2

M
− 𝛾d

∑

(xi,xj∈D)

‖‖‖xi − xj
‖‖‖
2

M
+ tr

(
XLXTM

)

s.t.M ≻
−
0

(6)SEells(f ) = ∫ ∇a∇bf
2
T∗
x
M⊗T∗

x
M
dV(x)

(7)‖‖∇a∇bf
‖‖
2

T∗
xi
M⊗T∗

xi
M
=

m∑

r,s=1

(
𝜕2f

𝜕xr𝜕xs

)2
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So we obtain

where H(i)

��
=
∑n

r,s=1
B
(i)
rs�B

(i)

rs�
, � ∈ ℝ

k and �j = f
(
Xj

)
 with Xj ∈ Nk

(
Xi

)
 . Nk

(
Xi

)
 denotes the 

set of k nearest neighbors (NN) of point Xi . At point Xi , the norm of the second covariant 
derivative is just the Frobenius norm of the Hessian of f  in normal coordinates. The final 
norm is formulated as follows by summing all the points:

Here, the resulting function is called the Hessian regularization SHess(f ) and H is called 
Hessian matrix.

3 � Hessian Regularized Distance Metric Learning

In this section, we introduce our proposed Hessian Regularized distance metric learning. 
We are given h unlabeled examples  =

{(
x1, x2,… , xh

)}
 and l labeled examples to make 

up two sets of pairwise constraints S and D . Based on the above information, we formulate 
the distance metric learning problem into the following optimization framework:

where f  . is some objective function defined over the given data and M̃ is the desired dis-
tance metric. Following the regularized loss minimization principle, we define our regular-
ized loss function as:

or like this:

where �a and �b and �c are the parameters to balance the different terms. L(S,M) and 
L(D,M) are the loss functions defined on the sets of similar and dissimilar constraints. In 

(8)
�2f

�xr�xs
|Xi

=

k∑

j=1

B
(i)

rsj
f (Xj)

(9)‖‖∇a∇bf
‖‖
2
=

m∑

r,s=1

(
k∑

�=1

B(i)
rs�
��

)2

=

k∑

�,�=1

����H
(i)

��

(10)

SHess(f ) =

n�

i=1

m�

r,s=1

�
�2f

�xr�xs
�Xi

�2

=

n�

i=1

�

�∈Nk(Xi)

�

�∈Nk(Xi)

����H
(i)

��

= ⟨f ,Hf ⟩

(11)
M̃ = min

M
f (M, S,D,)

s.t.M ≻
−
0

(12)f (M, S,D,) = L(M, S,D) + J(M, S,D,)

(13)f (M, S,D,) = �aL(S,M) + �bL(D,M) + �cJ(M, S,D,)
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this paper, we adopt the sum of squared distances expressions to define two loss functions 
in terms of effectiveness and efficiency:

As for J(M, S,D,) , the additional regularization term is expressed as follows:

By summing the energy over all points, the squared norm of the Hessian is actu-
ally weighted with local density of the points leading to a stronger penalization of the 
Hessian in densely sampled regions. Substituting the loss functions and regularization 
term, the formula of Hessian regularized distance metric learning can now be immedi-
ately stated. We have to solve:

The optimization obviously is a form of Convex Programming, which can be solved 
efficiently by using traditional Newton–Raphson method. The details are given:

Optimization algorithm

Step 1. Initialize M with M0 , set k = 0 and 0 < 𝜀 ≪ 1.

Step 2. Compute gk(gradient)andHk(Hessian) . gk = ∇f
(
Mk

)
=

�f

�Mk

 , Hk = ∇2f
(
Mk

)
=

�2 f

�M2
k

.

Step 3. If gk < 𝜀 , stop iterating;
Else compute dk = −H−1

k
⋅ gk

Step 4. compute Mk+1∼ = Mk + dk

Step 5. k∼ = k + 1 , Jump to Step 2.

(14)

L(S,M) =
∑

(xi,xj∈S)

‖‖‖xi − xj
‖‖‖
2

M

=
∑

(xi,xj∈S)

(
xi − xj

)T
M
(
xi − xj

)

= tr(S ⋅M)

(15)

L(D,M) =
∑

(xi,xj∈D)

‖‖‖xi − xj
‖‖‖
2

M

=
∑

(xi,xj∈D)

(
xi − xj

)T
M
(
xi − xj

)

= tr(D ⋅M)

(16)

J(M, S,D,) = ⟨f ,Hf ⟩ =
k�

�,�=1

H��

�
f� − f�

�2
=

k�

�,�=1

H��

���Px� − Px�
���
2

= tr
�
XHXTM

�

(17)
argmin

M
𝛾str(S ⋅M) − 𝛾dtr(D ⋅M) + 𝛾ctr

(
XHXTM

)

s.t.M ≻
−
0, 𝛾s ≥ 0, 𝛾d ≥ 0, 𝛾c ≥ 0
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3.1 � Complexity Analysis

Suppose we are given n samples. The time complexity of optimization algorithm is O 
( n3) which is rather high because it needs to compute Hk and H−1

k
 . For computing Hes-

sian regularization, the first step is to find the k-nearest neighbors Nk of sample Xi and 
centralize the neighborhood which determines the time complexity of this process is O 
( n × k) . Compared with computing Laplacian regularization, firstly we have to compute 
adjacency matrix W  in order to compute Laplacian matrix L which means we need to 
compute the weights of each sample with other samples. In this process, each sample 
will traverse n times. So the time complexity is O ( n2) . Since the number of nearest 
neighbors of Xi is generally smaller than the number of samples n , there is less compu-
tation complexity in computing Hessian regularization than Laplacian regularization.

4 � Experiments

We evaluate the proposed Hessian regularized DML on the VIPeR dataset、CUHK 
Campus dataset and CUHK03 dataset, which are widely used for evaluating people 
re-identification. By the average cumulative match characteristics (CMC) curves, we 
obtain the ranked matching rates over 10 trials to evaluate the person re-identification 
performance of the learned distance metric.

4.1 � Dataset Description

To evaluate the performance of the proposed approach, we implement extensive experi-
ments on VIPeR dataset [20], CUHK Campus dataset [21] and CUHK03 dataset [22] 
which are widely used for evaluation. The VIPeR dataset was captured by two cam-
eras in the open environment. It is a very challenging dataset widely used for bench-
mark evaluation which suffers from viewpoint changes, pose variations and illumination 
between two images of a person. It consists of 632 pedestrian pairs. Each pair is com-
posed of images of the same person from different viewpoints. All images are normal-
ized to 128 × 48 pixels. The CUHK Campus dataset was acquired in two disjoint camera 
views in a campus environment. It contains 971 pairs of pedestrian images. The images 
in this dataset have higher resolution than those in VIPeR dataset. Image regions are 
scaled to 160 × 60 pixels. The CUHK03 dataset was built under six surveillance cameras 
with 13,164 images of 1360 pedestrians. Each pedestrian in the dataset is observed in 
two disjoint views with an average of 4.8 images in one view. What’s more, the dataset 
provides manually cropped person images as well as samples detected with a pedestrian 
detector. Figure 1 exhibits some samples of VIPeR dataset, CUHK Campus dataset and 
CUHK03 dataset.

4.2 � Feature Selection

In this paper, we employ three types of low-visual feature including Local Binary Pat-
tern (LBP) descriptors, HSV histograms and Lab histograms to represent each normal-
ized image. The features are extracted from 8 × 16 overlapping blocks and step on every 
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image is 8 × 8. Ultimately we link all the feature descriptors and conduct dimensionality 
reduction by PCA to speed up learning process and reduce interference factors.

4.3 � Experimental Settings

We follow the widely adopted evaluation procedure [23] in our experiments on VIPeR 
dataset, which means randomly choose 316 pairs of person images as training set and the 
remaining as testing set. Experiments on the CUHK Campus dataset also apply the same 
evaluation procedure. We randomly select 485 pairs of person images for training and the 
other 486 pairs for testing. Experiments on the CUHK03 dataset follow the setting of [22] 
which means the dataset is divided into a training set of 1160 persons and a test set of 
100 persons. All processes are repeated for ten times. In the training stage, we use two 
images of the same person as similar pairs and make up dissimilar image pairs by choos-
ing two images of different individuals. In the test stage, we randomly divide the test set 
into a gallery set and a probe set. A single image from the probe set is then selected and 
matched with all images from the gallery set. Parameters �s , �d , �c are tuned from candidate 
set {1 × 10e|e = −4,−3,… , 3} by cross validation.

4.4 � Experimental Results and Analysis

4.4.1 � Experiments on the VIPeR Dataset

In this section, we firstly compare the proposed method Hessian regularization DML 
with some popular methods on the VIPeR dataset. The cumulative matching scores at 

Fig. 1   Some instances from the VIPeR dataset、CUHK Campus dataset and CUHK03 dataset
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rank-1, rank-5, rank-10 and rank-20 are listed in Table 1. We can see that our proposed 
method obtains inspired performance. Then we assign 5%, 10%, 20%, 50% of training 
data as labeled data and the rest as unlabeled data to conduct semi-supervised exper-
iments. The results in Fig.  2 show that the matching rate appears to increase when 
there are more labeled samples and our proposed method Hessian regularization DML 
significantly boosts performance than the compared algorithms, thereby validating the 
effectiveness of Hessian regularization for encoding the marginal distribution informa-
tion of local geometry. Finally, we conduct the parameter sensitivity analysis of scale-
balance parameters �d and �c which are the most important parameters. The influence 
of balanced parameters �d and �c to the Rank 1 matching rates is showed in Fig. 3.

4.4.2 � Experiments on the CUHK Campus Dataset

In this section, we compare our proposed method Hessian regularization DML 
with some popular methods on the CUHK Campus dataset. Table  2 shows different 
approaches of the cumulative matching scores at rank-1, rank-5, rank-10 and rank-20. 
As shown in Table 2, our approach outperforms most benchmarking approaches espe-
cially be superior to Laplacian regularization DML. Figure 4 reveals the influence of 
parameter k which is the number of neighbors for computing Hessian to the Rank 1 
matching rates. We can see that there is an upper trend of matching rates with the 
increase of k . When k reaches 80, the matching rates slowly remain stable. Meanwhile, 
the average training time of six different DML methods is shown in Table 3. We per-
form the training on a notebook PC with an Intel (R) i5-4200 M @ 2.5GHZ CPU.

Table 1   Comparison of several 
popular approaches on the VIPeR 
dataset (M = 316)

Method Rank 1 Rank 5 Rank 10 Rank 20

Zhao et al. [24] 30.73 52.34 65.8 –
Zeng et al. [25] 31.46 54.65 68.45 81.85
Mid-level filter [26] 29.13 52.54 65.91 79.96
Region-based salience [27] 27.07 50.42 62.67 76.32
LDFV [28] 26.56 56.4 70.93 84.64
Zhao et al. [29] 24.1 49.65 61.3 74.27
Leng et al. [30] 21.72 50.7 70.24 81.45
EIML [31] 20.95 46.57 61.76 76.85
Hessian (Our method) 20.31 41.35 52.16 68.18
SDALF [31] 19.8 39.45 48.64 64.8
KISS [5] 18.35 48.26 62.18 77.06
PRDC [4] 15.33 38.3 53.75 70.09
Mahal distance 17.72 37.82 49.68 62.97
LMNN [33] 17.09 41.61 54.27 68.04
ITML [34] 15.51 36.39 52.06 68.67
Laplacian [16] 13.65 28.8 39.69 51.22
Baseline [35] 6.96 17.03 24.05 32.28
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4.4.3 � Experiments on the CUHK03 Dataset

In this section, we compare our proposed method Hessian regularization DML with 
some popular methods on manually cropped person images of CUHK03 dataset. The 
cumulative matching rates at rank-1, rank-5, rank-10 and rank-20 are shown in Table 4. 

Fig. 2   Matching rate versus different number of labeled samples. The red legend ‘Hessian regularization’ 
represents our proposed method
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It is obvious that the average matching rates are lower than those in the first two data-
sets. But compared with related classical algorithms, our method still has a certain 
degree of improvement.

5 � Conclusions

Distance metric learning is critically important for the surveillance task person re-identifi-
cation. Many semi-supervised algorithms based on manifold regularization have been suc-
cessfully applied to it. However, the most representative method based on Laplacian Regu-
larization (LR) which suffers from the null space is the constant function along the compact 
support of the marginal distribution and the lack of extrapolating power particularly when 

Table 2   Comparison of 
several popular approaches on 
the CUHK Campus dataset 
(M = 485)

Method Rank 1 Rank 5 Rank 10 Rank 20

Mid-level filter [26] 32.3 53.2 63.77 72.15
Zhao et al. [24] 28.45 45.87 55.76 67.91
Hessian (Our method) 21.96 40.82 52.03 62.27
Genericmetric [21] 20 43.7 55.13 69.22
Laplacian [16] 18.56 35.88 44.85 53.71
eSDC [29] 19.67 22.51 40 50.64
ITML [34] 15.98 33.54 45.63 59.72
LMNN [33] 13.45 31.56 42.37 53.04
L1-norm distance 10.33 20.84 24.2 31.73
SDALF [32] 9.90 21.25 30.07 39.84
L2-norm distance 9.84 19.89 25.1 32.5
Baseline [35] 8.96 17.11 21.55 28.87

Fig. 4   Performance of Hes-
sian regularization when the 
parameter k varies. Measured by 
Rank-1 matching rates for CUHK 
Campus dataset

Table 3   Comparison of 
training time (s) of six different 
algorithms

Method Baseline ITML Laplacian KISSME LMNN Hessian

Time (s) 0.97 8.60 1.6 0.01 27.56 1.25
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the number of labeled samples is small. Therefore, we present Hessian Regularization to 
tackle these problems for distance metric learning. The proposed method can naturally 
combine both loss function and Hessian regularization to boost learning performance. 
Extensive experiments on the VIPeR dataset、CUHK Campus dataset and CUHK03 data-
set demonstrate that the proposed Hessian regularization DML significantly outperforms 
LR-based and other algorithms.
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